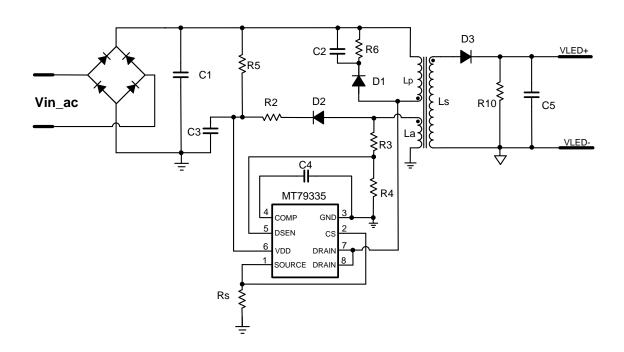


描述

MT79335 是一个单级,高功率因子(PF),原边控制交流转直流 LED 驱动芯片。MT79335 集成片上 PF 功能,工作在临界导通模式下,实现了高功率因数并减少 MOSFET 电源开关损耗。利用美芯晟科技特有的控制技术(已申请专利),不需要光耦等副边感应器件就可以精确地控制 LED 电流。

MT79335 内置 600V 高压功率管,简化了外围电路。

MT79335 同时实现了各种保护功能,包括过流保护 (OCP)、 过压保护 (OVP),短路保护 (SCP)和过热保护(OTP)等,以确保系统可靠的工作。


应用

- AC/DC LED 驱动
- LED信号灯和装饰灯
- E27/PAR30/PAR38/GU10等LED灯
- T8/T10 LED 串

主要特点

- 单级有源 PF, 实现了高功率因数和低THD
- 原边感应机制,无需光耦
- 高精度LED电流(+/-3%)
- 临界导通模式
- 逐周期峰值电流控制
- 内置欠压锁定保护
- VDD过压保护,输出过压保护
- 可调的恒定输出电流及输出功率
- 具有软启动功能
- 内置600V功率MOSFET
- DIP8 封装

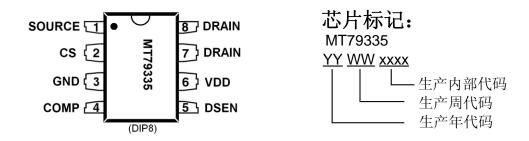
典型应用电路

极限参数

VDD 电压	-0.3V ~ VDD 钳位
DRAIN 管脚电压	-0.3V ~ 600V
COMP/CS/SOURCE/DSEN 管脚电压	-0.3V ~ 5V
焊接温度 (10 秒)	260°C
P _{DMAX} (最大功耗)	1.5W
存储温度	-55°C ~ 150°C
结温 (Tj)	150°C

推荐工作条件

电源电压	7.2V ~ 23V	
工作温度 (环境)	-40°C ~ 105°C	


热阻^①

PN 结到外部环境 (ReJA)	170°C/W
PN 结到封装表面 (ReJC)	130°C/W

注释:

① 测定条件是在 TA = 25°C 低效导热性单层测试板上,在自然对流条件下按 JEDEC 51-3 热计量标准 进行测试。测试条件: 设备 PCB 安装在 2" X 2" FR-4 的基板上, 20z 铜箔厚度, 项层金属放置最小衬 垫,通过散热过孔与底层接地平面相连。

管脚排列图

管脚描述

管脚名称	管脚号	描述
SOURCE	1	功率 MOS 管源极
CS	2	电流采样端
GND	3	地
COMP	4	内部误差放大器的输出。连接一个对地的电容器进行频率补偿
DSEN	5	辅助绕组的反馈电压。通过电阻分压器连接到辅助绕组以反映输出电压
VDD	6	电源脚
DRAIN	7, 8	功率 MOS 管漏极

单级高功率因子 AC-DC LED 驱动

电气参数

(除非特别说明,测试条件为: VDD=12V, TA=25°C)

符号	参数	条件	Min	Тур	Max	Unit
启动 (VD	D 脚)	<u> </u>	1			•
I _{START}	启动电流			25	50	μA
UVLO	欠压锁定阈值 V _{DD}	V _{DD} 脚电压下降		7.2		V
V_{START}	启动电压	V _{DD} 脚电压上升		18		V
电源电流						
l _q	静态电流	无开关动作		1.2		mA
控制回路						
V_{FB}	原边电流感应参考电压		392	400	408	mV
V_{COMPH}	COMP 脚上限			2.0		V
SCP	DSEN 脚短路保护阈值			400		mV
OVP1	VDD 脚过压保护阈值			24		V
OVP2	DSEN 脚过压保护阈值			3.2		V
T_{OFF_min}	最小关断(OFF)时间			6.4		us
电流检测	(CS 脚)					
LEB	CS 脚的内置前沿消隐时间			240		nS
OCP	CS 脚的过流保护阈值			1.8		V
热保护						
OTP	过热保护温度阈值			150		$^{\circ}\mathbb{C}$
	过热保护释放的迟滞温度			20		$^{\circ}\mathbb{C}$
高压功率	MOS 管(DRAIN/SOURCE)					
BV _{DSS}	功率 MOS 漏极耐压		600			V
R _{DSON}	内部高压功率管导通阻抗	VGS=10V/I _{DS} =2.0A			5	Ω

单级高功率因子 AC-DC LED 驱动

功能描述

MT79335 是一个单级、原边反馈的交流转直流 LED 驱动芯片。通过检测原边电气信息,可精确 控制 LED 电流。MT79335 集成功率因子校正功能,消除了对市电网络的电流谐波污染;工作在临界导通模式 (CRM),提高了效率。内置 600V 功率 MOS管,简化了电路设计,优化了系统成本与 PCB 面积。

电流控制

通过检测原边电气参数,MT79335 能够精确控制 LED 电流。LED 电流能够通过下面的公式很容易的设置(请参阅在第1页的应用电路):

$$I_{LED} = \frac{1}{2} \frac{N_P}{N_S} \frac{V_{FB}}{R_S}$$

式中 N_P 是原边绕组, N_S 是次级绕组; V_{FB} (=400mV) 是内部参考电平, R_S 是外部电流感应电阻。

启动过程

启动过程中,VDD 通过一个连接到母线的启动电阻充电。当 VDD 达到 18V 时, COMP 脚被内部电路预充电。当 COMP 达到 0.8V 后,内部控制回路完成建立,这被认为是"LoopOK"。 然后 PWM 信号被发送到内置功率 MOS 管,启动转换器。

一旦辅助绕组上的电压升得足够高, 芯片的电源将由辅助绕组提供。

当 VDD 低于 7.2V 时, PWM 信号将会关闭 (欠压锁定阈值电压).同时, COMP 放电到地电位。整个启动过程如图 1 所显示。

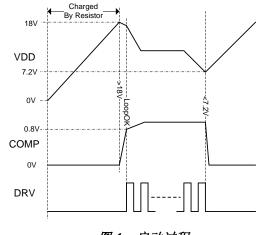


图 1、启动过程

功率因子校正

在功率 MOS 管的导通时间内,原边电流会从 0mA 线性增加到峰值,该电流可以通过感应电阻由 CS 脚检测到。当原边电流达到阈值极限, MT79335 会立即关闭 MOS 管。当 MOS 管漏极电压达到谷底或者附近时,MT79335 会再次开启 MOS 管。通过美芯晟科技的专有技术,峰值电流的阈值会跟踪整流后的母线电压的正弦波形。因此,电感电流的包络也是正弦波形,因而可实现高功率因数。

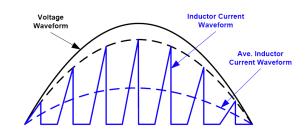


图 2、功率因数校正

辅助绕组电气参数检测

功率 MOS 管的开通是通过检测 DSEN 脚波形决定的,该波形通过电阻分压器在辅助绕组上取样得到。当 DSEN 波形在关断时间内低于 0V, 这就表明功率 MOS 管漏极电压已经降至谷底或者附近,MT79335 将会再次启动功率 MOS 管。此外,最小关断时间机制保证了系统的抗干扰能力。

除此以外, MT79335 还具有短路、开路和过流保护等功能,这些功能都是通过检测辅助绕组的波形信息来触发的。这是因为在功率 MOS 管关断时间内,辅助绕组电压与输出电压(次级绕组电压)成正比。辅助绕组电压的检测是由 DSEN 脚在栅极驱动信号结束后经过一个前沿消隐时间后,进行采样的。辅助绕组检测功能如图 3 所示。

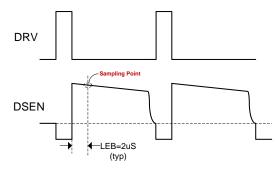


图 3、辅助绕组电气参数检测

单级高功率因子 AC-DC LED 驱动

过电压保护

MT79335 内置两个过压保护机制: (1) DSEN 脚电压高于 3.2V 且发生三次,则被判定为输出开路。MT79335 将关闭 PWM 开关信号,VDD 电压逐渐降至 UVLO 阈值,并进入重启模式。输出电压的过压保护阈值 V_{OUT_OV} 可以由下式来设定(参考第 1 页的应用电路):

$$V_{OUT_OV} = 3.2 * (1 + \frac{R3}{R4}) * \frac{N_s}{N_o} + V_{D3}$$

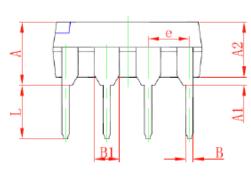
式中 N_s 是次级绕组, N_a 是辅助绕组, V_{D3} 是次级绕组整流二极管的正向压降。

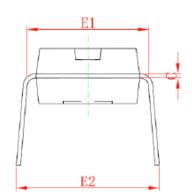
(2) 如果 VDD 脚的电压超过 24V 三次, MT79335 自动关闭 PWM 信号, VDD 逐步降至 UVLO 阈值,并进入重启模式。建议设计合适的

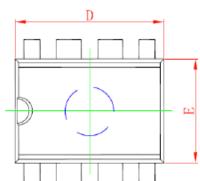
变压器 N_a 与 N_s 比例。将 VDD 电压设置在 12V 到 22V 之间。

短路保护

如果 DSEN 脚电压在关断时间内低于 400mV,并 持续 5~10 毫秒,则开启短路保护功能。PWM 驱 动信号将停止。当 VDD 电压逐渐降至低于 UVLO 阈值时,系统将进入重启模式。


上述重启过程将一直重复,直到短路消除。


过流保护


一旦 CS 脚电压超过 1.8V, MT79335 将立即关断 功率 MOS 管。这种逐周期过流检测的方式保护了 相关的元件免于损坏,如功率 MOS 管,变压器等等。

DIP8 封装外形尺寸

Cb - I	Dimensions In Millimeters		Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	3. 710	4. 310	0. 146	0. 170	
A1	0. 510		0. 020		
A2	3. 200	3. 600	0. 126	0. 142	
В	0. 380	0. 570	0. 015	0. 022	
B1	1. 524 (BSC)		0. 060 (BSC)		
C	0. 204	0. 360	0. 008	0. 014	
D	9. 000	9. 400	0. 354	0. 370	
E	6. 200	6. 600	0. 244	0. 260	
E1	7. 320	7. 920	0. 288	0. 312	
e	2. 540 (BSC)		0. 100 (BSC)		
L	3. 000	3. 600	0. 118	0. 142	
E2	8. 400	9. 000	0. 331	0. 354	

重要声明:

- •美芯晟科技有限公司保留不发布通知而对该产品和服务随时进行更改,补充,改进和其它变动的权利。用户敬请在购买产品之前获取最新的相关信息并核实该信息是最佳的和完整的。所有产品在订单确认后将遵从美芯晟科技有限公司的销售条例进行销售。
- •本资料内容未经美芯晟科技有限公司许可,严禁以其它目的加以转载或复制等。
- 对于未经销售部门咨询使用本产品而发生的损失,美芯晟科技有限公司不承担其责任。

索取产品详细信息及样片申请,请联系:

美芯晟科技有限公司 (北京办公室)

北京市海淀区知春路 106 号, 皇冠假日酒店写字楼 1006。邮政编码 100086

电话: 86-10-62662828 传真: 86-10-62662951

美芯晟科技有限公司 (深圳办公室)

广东省深圳市福田区北环大道 7043 号青海大厦 1115 室 P.C 518000

电话: 86-755-83021778 传真: 86-755-83021336

美芯晟科技有限公司 (苏州办公室)

江苏省苏州市苏州工业园区星湖街 328 号创业产业园 3-B503 单元,邮政编码 215021

电话: 86-512-62958262 传真: 86-512-62958262

美芯晟科技有限公司 (厦门办公室)

福建省厦门市湖里区安岭路 966-968 号汇金湖里大厦办公楼 5 层 6A06

电话: 86-592-8263028

美芯晟科技有限公司 (杭州办公室)

浙江省杭州市楚天路 266 号-3 号楼 1 楼

电话: 86-571-86698935

美芯晟科技有限公司 (中山办公室)

广东省中山市古镇六坊花园 B2座 1001室

电话: 86-760-88752711

网站: www.maxictech.com

电邮: sales@maxictech.com, info@maxictech.com