

Datasheet

DB640-17C-A 640x480 LWIR UNCOOLED MICROBOLOMETER

DESCRIPTION

A

DB640-17C-A is an uncooled infrared image sensor with a reliable, small and lightweight, low input power focal plane array.

SPECIFICATION

- 640x480 pixel focal plane array
- Pixel-pitch : 17 µm
- NETD \leq 50mK @ f/1, 300K, 30 Hz
- Frame-rate : Max 60 Hz @ 2ch
- Video output : 1ch or 2ch (Selectable)
- 1ch max 30 Hz, 2ch max 60 Hz
- Default mode : 2ch
- Dimensions (WxHxD) : 24x24x3.3 mm³ (without pin)
- Weight : ≤7g
- Spectral Response : LWIR
- Sensitive area : 10.88x8.16 mm²
- Thermal time constant $\leq 15 \text{ ms}$
- Array format windowing capability

FEATURES

- Uncooled operation
- Adjustable integration time
- Power supply: 5V for analog and digital
- Output dynamic range: 1 V to 4 V
- H, V image flip array
- 27-lead ceramic vacuum package
- On-chip temperature sensor
- Typical responsivity : 10 mV/K
- User defined windowing capability

DB640-17C-A / 640 x 480 VGA LWIR UNCOOLED MICROBOLOMETER

1/36

Α

Table of contents

1.	DESCRIPTION 3	5
2.	WARRANTED PARAMETERS 4	ł
	2.1 ELECTRO-OPTICAL PERFORMANCE 4	ł
	2.2 DEFECT	;
	2.3 MECHANICAL AND THERMAL SPECIFICATION	5
3.	ENVIRONMENTAL CONDITIONS 7	,
	3.1 CLIMATIC ENVIRONMENT	7
	3.2 MECHANICAL ENVIRONMENT	1
4.	ELECTRICAL INTERFACES 8	;
	4.1 READOUT CIRCUIT DESCRIPTION	3
	4.2 INPUT INTERFACES	L
	4.3 COARSE NON-UNIFORMITY CORRECTION)
5.	PHYSICAL INTERFACE DATA 27	1
	5.1 MECHANICAL INTERFACE DATA	7
	5.2 THERMAL INTERFACE DATA	1
	5.3 OPTICAL INTERFACE DATA	;
6.	ANNEXES	,
7.	GLOSSARY	ł
8.	LIST OF FIGURES	;
9.	LIST OF TABLES	j

DB640-17C-A / 640 x 480 VGA LWIR UNCOOLED MICROBOLOMETER

2/36

1. **DESCRIPTION**

A

The aim of this document is to explain the main features, performance and specifications of the 640 x 480 pixel uncooled microbolometer named as DB640-17C-A.

DB640-17C-A is an opto-electronic device sensitive to infrared radiation in the long wave spectral range (see Figure 2). It has a microbolometer Focal Plane Array (FPA) made up of 640 x 480 elements, which are two dimensional detector array made from titanium oxide resistive bolometer linked to the silicon Read-Out Integrated Circuit (ROIC). DB640-17C-A infrared image sensor produces raw analog video data at up to 60 frames per second. The sensor could be controlled by a serial communication data input. The pixel size is 17 μ m x 17 μ m. The image size is 10.88 mm by 8.16 mm with 640 x 480 nominal formats.

Figure 1 Pinout diagram (rear view)

Pin Number	Name	In/Out	Description
1	OVDD	Input	Output Supply Voltage
2	OGND	Input	Output Ground
3	VOUT_O	Output	Odd Row Output Voltage
4	VOUT_E	Output	Even Row Output Voltage
5	AVDD1	Input	1 st Analog Supply Voltage
6	AGND1	Input	1 st Analog Ground
7	Reserved	-	-
8	Ref	Input	Analog Ground with 100nF cap (necessary)
9~13	NC	-	-
14	AVDD2	Input	2 nd Analog Supply Voltage
15	AGND2	Input	2nd Analog Ground
16	Reserved	-	-
17	Reserved	-	-
18	Reserved	-	-
19	DVDD1	Input	1 st Digital Supply Voltage
20	DGND1	Input	1 st Digital Ground
21	FSYNC	Input	Frame Sync. Signal
22	LSYNC	Input	Line Sync. Signal, Integration Time Control
23	MCLK	Input	Master Clock
24	DVDD2	Input	2 nd Digital Supply Voltage
25	DGND2	Input	2 nd Digital Ground
26	CLE	Input	Command Latch Enable
27	SCDI	Input	Serial Communication Data Input

Table 1 Description of pin configuration

DB640-17C-A / 640 x 480 VGA LWIR UNCOOLED MICROBOLOMETER

3/36

2. WARRANTED PARAMETERS

2.1 Electro-optical Performance

A

2.1.1 Test operating conditions

The test condition of DB640-17C-A is set at a typical background temperature of $20 \pm 2^{\circ}C$ and the output rate is 10 MHz (for a 30 Hz acquisition frequency). The electro-optical parameters are defined and measured with an f/1.0 optical aperture condition.

The useful temperature dynamic range at the detector window level is higher than 100°C.

2.1.2 Temporal NETD

The average temporal pixel NETD is better than 50mK at a 30 Hz frame rate and the temperature of 293K.

2.1.3 Responsivity

This parameter is not a specification and is given only for information only. For information, the value of responsivity is typically 10mV/K. The responsivity mean value is calculated upon the operating pixel population.

2.1.4 Spectral response

The DB640-17C-A shows a typical spectral response as seen on Figure 2 below.

Figure 2 Typical spectral response gauge of DB640-17C-A

DB640-17C-A / 640 x 480 VGA LWIR UNCOOLED MICROBOLOMETER $4\,/\,36$

	Wavelength	Transmittance
Average	$8\mu m \le \lambda \le 10 \ \mu m$	$\geq 86\%$
Transmittance	$8\mu m \le \lambda \le 14 \ \mu m$	≥ 77%
	$1\mu m \le \lambda \le 6.5 \ \mu m$	≤ 1%
Peak Transmittance	$1\mu m \le \lambda \le 6.5 \ \mu m$	≤ 3%
Cut on wavelength	7.5±0.2 μm	50%

Table 2 Specification of Transmittance

2.2 Defect

A

2.2.1 Definition

Non-operating pixel

A pixel is referred to "non-operating" if:

- Its responsivity is < 0.7 x average responsivity or > 1.3 x average responsivity
- Its NETD is ≥ 75 mK

A single non-operating pixel is a non-operating pixel with no adjacent non-operating pixel.

Areas

The FPA is divided in two areas which have the same optical axis (see figure 3):

- Area A : the central zone of 160 x 120 pixels
- Area B : the 640 x 480 area (i.e. excluding area A) of the array

Figure 3 Area definition

DB640-17C-A / 640 x 480 VGA LWIR UNCOOLED MICROBOLOMETER $5\,/\,36$

Cluster

A

A cluster is defined as a group of at least two non-operating pixels adjacent by side or corner. The clusters are defined by their size in terms of non-operating pixels.

2.2.2 Operability specification

Operability of the array higher than 99.0% (typically \geq 99.5%)

Zone	Cluster size
Area A	Maximum cluster size $= 8$
Area B	\leq 2 clusters of 9 to 14 non-operating pixels maximum
Aica D	Maximum cluster size $= 14$

Table 3 Operability specification

2.3 Mechanical and Thermal Specification

2.3.1 Weight

The weight of DB640-17C-A is less than 7g.

2.3.2 Total power consumption

The stabilized power consumption of DB640-17C-A at room temperature is less than 350mW at 30Hz frame rate.

3. ENVIRONMENTAL CONDITIONS

A qualification to the following environmental conditions has been performed on detectors taken by sampling into the production deliveries and therefore fully representative of the produced detector quality. These conditions do not represent the maximum detector acceptable levels.

3.1 Climatic Environment

A

3.1.1 High temperature storage

MIL-STD 810G, method 501.5 : storage 7 days at +63°C

3.1.2 High temperature operation

MIL-STD 810G, method 501.5 : 3 days x 1cycle (1cycle=24hours) at +63°C

3.1.3 Low temperature storage

MIL-STD 810G, method 502.5: storage 72 hours at -32°C

3.1.4 Low temperature operation

MIL-STD 810G, method 502.5 : Maintain -32°C for at least two hours following temperature stabilization and conduct an operational checkout

3.2 Mechanical Environment

3.2.1 Vibration

Composite wheeled vehicle vibration exposure

MIL-STD 810G, method 514.6C-VI. Category 4 : Vertical 2.24grms, Transverse 1.48grms, Longitudinal 1.90grms, 2 hours / axis

Propeller aircraft vibration exposure

MIL-STD 810G, method 514.6D-II. Category 13 : $L_0 = 0.3 g^2/Hz$, $f_0 = 133 Hz$, 1 hour / axis

Jet aircraft external store vibration exposure

MIL-STD 810G, method 514.6D-IV. Category 15 : W_1 = 0.0026 g^2/Hz , W_2 = 0.097 g^2/Hz , f_0 = 2000Hz , f_1 = 1900Hz , 30s / axis

3.2.2 Shocks

MIL-STD 810G, method 516.6 Procedure I : saw tooth 20g 11ms, 3 shocks per axis & per direction

DB640-17C-A / 640 x 480 VGA LWIR UNCOOLED MICROBOLOMETER

7/36

4. <u>ELECTRICAL INTERFACES</u>

4.1 Readout Circuit Description

A

4.1.1 Readout integrated circuit architecture

The CMOS Read-Out Integrated Circuit (ROIC) extracts a signal from a high background current. The ROIC allows the integration of the information from the active cells after subtracting a common background current (skimming function by blind cells), to sample and hold this information row by row and to multiplex the information to the output.

Figure 4 Read-Out Circuit diagram

- Cell array : active cells (640x480), Correlated Double Sampling (CDS) cells (640x4[T], 640x4[B]), blind cells (640x2[Even Row], 640x2[Odd Row]), ATM cells (640x4)
- Column Circuit : integration of signals, CDS, Sample/Hold function
- Coarse Non-Uniformity Correction (NUC) : Resistance non-uniformity correction of the active & blind cell array
- Column & Row Decoder : generation of signals for cell access (windowing capability)
- Control Block : generation of core control signal & level generator control signal
- Level Generator : generation of core bias level & amp bias level
- Output Amp : transmitting the output of column circuit to a analog pad

DB640-17C-A / 640 x 480 VGA LWIR UNCOOLED MICROBOLOMETER

8/36

4.1.2 Operating mode

A

The standard readout operation of the detector is multi-integration which read even and odd rows simultaneously. The both rows of V, V+1 integration and both rows of V-2, V-1 readout run simultaneously. The output channel is selectable by resister setting from 1 to 2. (see Figure 8 Output timing diagram : 1 channel vs 2 channel mode.)

4.1.3 Current-voltage conversion

The current is integrated in a current-voltage conversion stage located at the end of each column. The current-voltage conversion is performed by a Capacitance Trans-Impedance Amplifier (CTIA). Integration time and capacitance control is available to optimize a gain.

Figure 5 Read-out circuit Schematic

Figure 6 Output channel mode

DB640-17C-A / 640 x 480 VGA LWIR UNCOOLED MICROBOLOMETER 9/36

	Input Range	Output Range
A1	2.0V ~ 3.0V	1.0V ~ 4.0V
A2	$1.0V \sim 4.0V$	1.0V ~ 4.0V
A3	1.0V ~ 4.0V	$1.0V \sim 4.0V$

Table 4 Input and Output range of amplifiers

4.1.5 Output stage

A

After signal current-voltage conversion and sample/hold of even and odd rows, multiplexer (640 to 1) allows signals of both rows to be transferred to 2 channel output or 1 channel output(selectable). The master frequency of the readout circuit (and hence the output rate) is adjusted with respect to the acquisition frequency aimed at.

4.2 Input Interface

A

Clock frequencies of signals are governed by the Master Clock (MCLK). Control signals necessary to operate the ROIC are :

- MCLK : Master Clock for ROIC operation, Tclk = 1period time of MCLK
- FSYNC : Frame sync for ROIC operation, it determine a frame rate
- LSYNC : Line sync for ROIC operation, it determine a integration time
- CLE : Command Enable signal for ROIC control
- SCDI : Data signal for ROIC control

4.2.1 Timing Diagram

1 period of LSYNC is consist of Integration Time and dummy clock.

- Integration time : Tpw 20Tclk
- Dummy clock : needs to be longer than a specific time to prevent from output overlay
- LSYNC to 1st Column output : 36.5Tclk

Figure 7 Output timing diagram

Channel mode is selectable by resister setting (see 4.2.2). The default mode is 2 channel which is better for high frame rate (up to 60Hz)

DB640-17C-A / 640 x 480 VGA LWIR UNCOOLED MICROBOLOMETER $11\,/\,36$

Λ	
А	

🛠 1 Chani	nel Mode
LSYNC	
VOUT_O	Odd Row Even Row
VOUT_E	3CLK
2 Chani	nel Mode
LSYNC	
VOUT_O	Odd Row
VOUT_E	Even Row

Figure 8 Output timing diagram : 1 channel vs 2 channel mode

4.2.2 Resister Setting

SCDI is composed of command, data and dummy clk. To active SCDI, CLE signal synchronized with a falling edge of MCLK needs to be a high level. The commands for several functions are described below.

Command (8bit)	Function	Data bit (bit)	Resolution	Range	Default (bit)	Analog Level	Dummy CLK	Memo
02h	Vskim level set	11	2.5 mV	1~5 V	01010110000	4.00 V	5	-
	Vholo	11			01011100100	2.85 V	1	Low (for NUC)
03h	level set	+(1clk) 11	2.5 mV	1~5 V	~5 V 01110011000		5	High (for adjusting a level) recommended bias (3.3V)
	Vblind	11			00011011100	1.55 V	1	Low (for NUC)
04h	level set	+(1clk) 11	2.5 mV	1~5 V	00100011000	1.70 V	5	High (for adjusting a level)
05h	Vcds level set	9	10 mV	1~5 V	010000010	2.30 V	7	-
	Amp bias		+30%	1.6uV ~ 30uV	100011	5 uA		MSB 6bit, recommended bias (5uA)
14h	level set	$\begin{array}{c c} \text{mp bias} \\ \text{evel set} \end{array} 12 \qquad \begin{array}{c} \pm 30\% \\ \text{step} \end{array}$		37.5uV ~ 525uV	011001	375 uA	4	LSB 6bit, recommended bias (375uA)
0Dh(Even Row), 1Dh(Odd Row)	Column Coarse NUC level set	2560 (:640 x 4bit)	-	-	11111111	-	16	Vblind Level set between Low(0000) to High (1111), factory supply with each detector
0Eh (Row direction)	Row Coarse NUC level set	1952 (: 488 x 4bit)	-	-	11111111	-	16	Vbolo Level set between Low(0000) to High (1111), factory supply with each detector
	Int cap 2pF				0	-		
	Int cap 4pF				0			
	Int cap 6pF	-			1			Default integration cap :
	Int cap 1st 8pF				0			брF
0Fh	Int cap 2nd 8pF	16bit	-	-	0		4	
	-				0			
	-				0			
	Blind Repair_O				0			Odd Blind cell replacement

DB640-17C-A / 640 x 480 VGA LWIR UNCOOLED MICROBOLOMETER $12\,/\,36$

Α

DB640-17C-

-	T	1	I	1	1	1	1	1
	Blind				0			Even Blind cell
	Repair_E				-			replacement
	-				0			
	-				0			
	-				0			
	-				0			
	-				0			
	-				0			
	-				0			
	Row Read							0 : Down to up, 1 : Up to
	direction				1	-		down
	set							
	Col Read							0 : Left to right, 1 : Right
	direction				1			to left
	set				0			
	-				0			-
	Top CDS				0			0 : on, 1 : off
	OII							
	CDS off				0			0 : on, 1 : off
	CDS 011				1			
15h	-	16bit	-	-	1		6	-
	-				0			
	-				0			-
					0			
					0			
	-				0			
	-				0			- 0on 1off (On abin
	output				0			temp sensor)
	Chappel							temp sensor)
	selection				0			0 : 2channel , 1 : 1channel
	selection				0			
					1			
					1			
16h	Col	20hit	1 line /	1 640	0000000000	1	4	MSB 10bit
1011	Address set	2001	1bit	1~040	0000000101	640	4	LSB 10bit
					000000101	0.0		LOD TOOK
	Row		1 line /		000000000	1		MSB 10bit
17h	Address set	20bit	2bit	1 ~ 480	0000011110	400	4	L GD 101 %
					0000011110	480		LSB 1001t
	DFF &							
Reset	Latch						2	
1	Reset							

 Table 5 SCDI data Table

DB640-17C-A / 640 x 480 VGA LWIR UNCOOLED MICROBOLOMETER $13\,/\,36$

DB640-17C-

Command	02h											
Specification	Range : 1V ~ 5V, Resolution : 2.5mV (11bit)											
Timeling	CLE								w.		u	_
Timing	SCDI —											
				COMMAND	(8 bit)			TRIM DAT	「A (11 bit)	Dummy (Clock (<mark>5Clk</mark>)	
							-	-1				
	Value	1 st	2 nd	3rd	4 th	5 th	6 th	7th	85	9 th	10th	11th
	1.00V	0	0	0	0	0	0	0	0	0	0	0
	1.01V	0	0	1	0	0	0	0	0	0	0	0
	1.02V	0	0	0	1	0	0	0	0	0	0	0
Default	4.00V	0	0	0	0	1	1	0	1	0	0	1
	:											
	5.00V	0	0	0	0	0	1	0	0	0	1	1

• Function of setting the output of Vskim level generator

• Function of setting the output of Vbolo level generator

Command	03h	03h											
Specification	Range	Range : 1V ~ 5V, Resolution : 2.5mV (11bit)											
Timing	MCLK	MCLK											
	Value	1 st	2 nd	3rd	4 th	5 th	6 th	7 th	8 th	9 th	10 th	11 th	
	1.00V	0	0	0	0	0	0	0	0	0	0	0	
Low Default	2.85V	0	0	1	0	0	1	1	1	0	1	0	
High Default	3.30V	3.30V 0 0 0 1 1 0 0 1 1 0											
	5.00V	0	0	0	0	0	1	0	0	0	1	1	

Figure 10 Vbolo latch set mode

DB640-17C-A / 640 x 480 VGA LWIR UNCOOLED MICROBOLOMETER $14 \, / \, 36$

DB640-17C-

Command	04h											
Specification	Range	Range : 1V ~ 5V, Resolution : (High – Low)/ (2 ⁴ -1)mV (Effectively 15bit)										
Timing	MCLK											
	Value	1 st	2 nd	3 rd	4 th	5 th	6 th	7 th	8 th	9 th	10 th	11 th
Low Default	1.00V	0	0	0	0	0	0	0	0	0	0	0
	1.55V	0	0	1	1	1	0	1	1	0	0	0
High Default				•								-
	1.70V	0	0	0	1	1	0	0	0	1	0	0
	5.00V	0	0	0	0	0	1	0	0	0	1	1

Function of setting the output of Vblind level generator

• Function of setting the output of Vcds level generator

Command	05h									
Specification	Range : 1V ~ 5V, Resolution : 10mV (9bit)									
Timing										
	$CLE \qquad \qquad$									
	COMMAND (8 bit) TRIM DATA (11 bit) Dummy Clock (7Clk)									
	Value	1 st	2 nd	3 rd	4 th	5 th	6 th	7 th	8 th	9 th
	1.00V	0	0	0	0	0	0	0	0	0
	1.01V	1	0	0	0	0	0	0	0	0
Default	1.02V	0	1	0	0	0	0	0	0	0
	0									
	2.30V	0	1	0	0	0	0	0	1	0
	0 0 0									
	5.00V	0	0	0	1	0	0	0	1	1

Figure 12 Vcds latch set mode

DB640-17C-A / 640 x 480 VGA LWIR UNCOOLED MICROBOLOMETER $15\,/\,36$

• Function of coarse non-uniformity correction (NUC) mode in column lines

Command	0Dh (Even Row), 1Dh (Odd Row)
Specification	NUC data set to Column NUC Latch
Timing	MCLK Image: Comparison of the second se

Figure 13 Coarse NUC mode (I)

• Function of coarse non-uniformity correction (NUC) mode in row lines

Command	0Eh (Row Direction)
Specification	Function of putting NUC data to the Row NUC Latch
Timing	MCLK

Figure 14 Coarse NUC mode (II)

• Function of setting several Trim information

Figure 15 Trim set mode (I)

DB640-17C-A / 640 x 480 VGA LWIR UNCOOLED MICROBOLOMETER $16\,/\,36$

• Function of setting the value for Amp bias

A

Figure 16 Amp bias latch set mode

• Function of setting several Trim information

Command	15h (Default Setting & New Trimming Set)
Specification	Bolometer ROIC의 각종 Operation Condition Setting
Timing	
	COMMAND (8 bit) TRIM DATA (1 bit) Dummy Clock (6Clk)

Figure 17 Trim set mode (II)

DB640-17C-

• Function of setting column start/end address (1 to 640)

Command	16h											
Specification	Column Start/End Address Setting by 1bit step											
Timing	CLE	MCLK Image: Constraint of the second sec										
Start Default	Start Add 1 st Col. 33 th Col.	1 st 0	2 nd 0	3 rd 0	4 th 0 0	5 th 0 0	6 th 0	7 th 0	8 th 0	9 th 0	10 th 0	End Add Invalid 32 th Col.
End Default	353 th Col. Invalid	0 0 s · Settir	0 0 0 Value	0 0 + 1. End	0 0 Address	0 0	1 0 Value	1	0	1	0	352 th Col. 640 th Col.

Figure 18 Column address set mode

- Command 17h Specification Row Start/End Address Setting by 2bit step MCLK CLE Timing 1st 2nd • • • 20th SCDI 1 1 0 1 1 0 0 0 COMMAND (8 bit) TRIM DATA (20 bit) Dummy Clock (4Clk) 2nd 3rd 4th 5th 6th 7th 8th 9th End Add Start Add 1st 10th Start Default 1st Col. 0 0 0 0 0 0 0 0 0 0 Invalid 25th Col. 0 0 0 1 1 0 0 0 0 0 24th Col. 265th Col. 264th Col. 0 0 0 1 0 0 0 0 1 0 End Default 480th Col. Invalid 0 0 0 0 0 0 1 1 1 1 * Start Address : Setting Value + 1, End Address : Setting Value
- Function of setting row start/end address (1 to 480)

Figure 19 Row address set mode

DB640-17C-A / 640 x 480 VGA LWIR UNCOOLED MICROBOLOMETER $18\,/\,36$

DB640-17C-

• Function of generating the DFF and Latch reset pulse

Command	FFh
Specification	Reset DFF & Latch value to Default
Timing	MCLK

Figure 20 Function for Reset

4.3 Coarse Non-uniformity Correction

A

4.3.1 Coarse non-uniformity correction (NUC)

Though default NUC bias level set(resister bit 1111...1111) is still available for operating detector, controlling the bias generator individually to reduce a non-uniformity results in maximizing a dynamic range. **NUC table (resister bit) will be supplied with each detector**. The NUC method described below is only given for information.

- NUC Resolution
 - High Level & Low Level : 1V ~ 5V (Minimum Step : 2.5mV, 11bit), adjustable
 - NUC Level : (High Level Low Level) / $(2^4 1)$
 - Effectively 15bit (11bit / 4bit) resolution

Figure 21 Output signal transition after coarse NUC process

4.3.2 Coarse NUC setting (recommended method)

Process for coarse NUC is divided into the following three steps.

First, set up the average output voltage as changing the value of Vskim and determine a suitable Vskim, which Vout is the nearest to DR/2(tunable value)

Second, confirm a Vblind bias range which is applied to 640 Vblind individually. The bias range is divided into 16 levels. Select one of the 16 levels (0 to 15), which makes the average of Column values close to the average of DR/2. 640 values of Column NUCs are then determined accordingly.

Third, Row NUCs are determined using same process as Column NUCs. 480 values of Row NUCs are determined accordingly.

DB640-17C-A / 640 x 480 VGA LWIR UNCOOLED MICROBOLOMETER $20\,/\,36$

Figure 22 A process flow chart of coarse NUC

• Vskim setting

Modulate the voltage of Vskim so that the average output voltage of 640x480 active cells should be equal to the voltage of DR/2. Determine the voltage of Vskim, which is the closest value to the DR/2.

Figure 23 Flow chart for determining the value of vSkim

DB640-17C-A / 640 x 480 VGA LWIR UNCOOLED MICROBOLOMETER 21 / 36

Figure 24 After setting the average output voltage of active cells to be the voltage of DR/2

• Auto Vskim setting (recommend)

Flow chart for auto Vskim setting is described below.

Figure 25 Flow chart for auto setting

• Column NUC setting

Modulate the high value of vBlind so that more than 90% (tunable value) of 640x480 active cells should be over the value of DR/2. Then determine the high value of vBlind.

Adjust the high value(**not low value**) of vBlind so that over 90% of 640x480 active cells should be under the value of DR/2. Then settle the low value of vBlind.

Ref) Because the low value of vBlind can't directly change the output voltage, the value of vBlind is determined by modulating the high value of vBlind and observing the corresponding output voltage.

Determine NUC value that makes the average voltage in the Column lines close to the value of DR/2, varying each Column NUC bias from 0 to 15.

DB640-17C-A / 640 x 480 VGA LWIR UNCOOLED MICROBOLOMETER $23\,/\,36$

Ref) The initial value of NUC bias is set to 15. As reducing the NUC bias from 15 to 0, find a suitable bias value.

Figure 26 Flow chart for determining the Column NUCs

Figure 27 After setting the 640 values of Column NUC bias generator

DB640-17C-A / 640 x 480 VGA LWIR UNCOOLED MICROBOLOMETER $24\,/\,36$

• Row NUC setting (recommend)

Modulate the high value of vBolo so that more than 90% of 640x480 active cells should be over the value of DR/2. Then determine the high value of vBolo..

Adjust the high value of vBolo so that over 90% of 640x480 active cells should be under the value of DR/2. Then settle the low value of vBolo.

Ref) Because the low value of vBolo can't directly change the output voltage, the value of vBolo is determined by modulating the high value of vBolo and observing the corresponding output voltage.

Determine NUC value that makes the average voltage in the Row lines close to the value of DR/2, varying each Row NUC bias from 0 to 15.

Ref) The initial value of NUC bias is set to 15. As reducing the NUC bias from 15 to 0, find a suitable bias value.

Figure 28 Flow chart for determining the Row NUCs

DB640-17C-A / 640 x 480 VGA LWIR UNCOOLED MICROBOLOMETER $25\,/\,36$

Figure 29 After settling 480 the values of Row NUC bias generator

DB640-17C-A / 640 x 480 VGA LWIR UNCOOLED MICROBOLOMETER $26\,/\,36$

5. <u>PHYSICAL INTERFACE DATA</u>

The packaging has the following traits: vacuum sealed miniaturized ceramic packaging, on-chip(on ROIC) and off-chip(on ceramic package. more precise, recommended) temperature sensor.

5.1 Mechanical interface data

A

The general mechanical description and the outline dimensions of the DB640-17C-A are presented in the annex. All dimensions are given in millimeters at room temperature.

5.2 Thermal interface data

5.2.1 Operating temperature

The DB640-17C-A guarantee to operate in ambient temperature range from -40° C to $+65^{\circ}$ C. But, operating and storage at high temperature decreases the vacuum lifetime.

5.2.2 On-chip (at the FPA level) thermometer

An on-chip thermometer provides an analog output voltage related to the temperature of FPA. The output voltage range is $1.75 \sim 2.05 \text{V}$ [315 mV] related to $-40 \sim 65 \text{°C}$ [105 °C], As a consequence, on-chip thermometer has a characteristic of 3 mV/K. But there is a manufactural variation rising a offset between an absolute temperature value and an measured one. The value is useful only as a reference.

Figure 30 Characteristic of On-chip thermometer

To activate the on-chip thermometer, trim resister value of 'Temp row output' (see Table 5 '15h') should be 0. Both the 481th and 482th row data are the output voltage related with temperature.

DB640-17C-A / 640 x 480 VGA LWIR UNCOOLED MICROBOLOMETER $27\,/\,36$

5.3 Optical interface data

The optical interface is comprised of an infrared window with the antireflective coating to optimize the incident radiation onto the FPA and a high pass filter to suppress short infrared wavelength ($<7.5 \mu m$). It is made from silicon with a thickness of 0.7 mm. The detailed optical interface is presented in the annex, sheet 03/04.

Α

DB640-17C-

6. <u>ANNEXES</u>

- ✓ General view : sheet 1/4
- ✓ Mechanical interface: sheet 2/4
- ✓ Optical interface: sheet 3/4
- ✓ Electrical interface: sheet 4/4

DB640-17C-A / 640 x 480 VGA LWIR UNCOOLED MICROBOLOMETER $29\,/\,36$

DB640-17C-A / 640 x 480 VGA LWIR UNCOOLED MICROBOLOMETER $30\,/\,36$

DB640-17C-A / 640 x 480 VGA LWIR UNCOOLED MICROBOLOMETER $31\,/\,36$

DB640-17C-A / 640 x 480 VGA LWIR UNCOOLED MICROBOLOMETER $32\,/\,36$

i3 system, Inc. Intelligent Image & Information System

DB640-17C-

DB640-17C-A / 640 x 480 VGA LWIR UNCOOLED MICROBOLOMETER 33 / 36

A

7. <u>GLOSSARY</u>

FPA : Focal Plane Array MCLK : Master Clock NETD : Noise Equivalent Temperature Difference **ROIC : Read-Out Integrated Circuit** TCR : Temperature Coefficient of Resistance TEC : ThermoElectric Cooler (Peltier module) VOUT_O : Odd Row Output Voltage VOUT_E : Even Row Output Voltage AVDD : Analog Supply Voltage DVDD : Digital Supply Voltage OVDD : Output Supply Voltage AGND : Analog Ground DGND : Digital Ground DGND : Output Ground SCDI : Serial Communication Data Input CDS : Correlated Double Sampling

DB640-17C-A / 640 x 480 VGA LWIR UNCOOLED MICROBOLOMETER34/36

The information contained within is confidential and should not be shared, sold, or distributed without explicit permission of i3system, Inc.

Α

8. LIST OF FIGURES

Α

FIGURE 1 PINOUT DIAGRAM (REAR VIEW)	3
FIGURE 2 TYPICAL SPECTRAL RESPONSE GAUGE OF DB640-17C-A	4
FIGURE 3 AREA DEFINITION	5
FIGURE 4 READ-OUT CIRCUIT DIAGRAM	8
FIGURE 5 READ-OUT CIRCUIT SCHEMATIC	9
FIGURE 6 OUTPUT CHANNEL MODE	9
FIGURE 7 OUTPUT TIMING DIAGRAM	11
FIGURE 8 OUTPUT TIMING DIAGRAM : 1 CHANNEL VS 2 CHANNEL MODE	12
FIGURE 9 VSKIM LATCH SET MODE	14
FIGURE 10 VBOLO LATCH SET MODE	14
FIGURE 11 VBLIND LATCH SET MODE	15
FIGURE 12 VCDS LATCH SET MODE	15
FIGURE 13 COARSE NUC MODE (I)	16
FIGURE 14 COARSE NUC MODE (II)	16
FIGURE 15 TRIM SET MODE (I)	16
FIGURE 16 AMP BIAS LATCH SET MODE	17
FIGURE 17 TRIM SET MODE (II)	17
FIGURE 18 COLUMN ADDRESS SET MODE	18
FIGURE 19 ROW ADDRESS SET MODE	18
FIGURE 20 FUNCTION FOR RESET	19
FIGURE 21 OUTPUT SIGNAL TRANSITION AFTER COARSE NUC PROCESS	20
FIGURE 22 A PROCESS FLOW CHART OF COARSE NUC	21
FIGURE 23 FLOW CHART FOR DETERMINING THE VALUE OF VSKIM	21
FIGURE 24 AFTER SETTING THE AVERAGE OUTPUT VOLTAGE OF ACTIVE CELLS TO BE	ETHE
VOLTAGE OF DR/2	22
FIGURE 25 FLOW CHART FOR AUTO SETTING	23
FIGURE 26 FLOW CHART FOR DETERMINING THE COLUMN NUCS	24
FIGURE 27 AFTER SETTING THE 640 VALUES OF COLUMN NUC BIAS GENERATOR	24
FIGURE 28 FLOW CHART FOR DETERMINING THE ROW NUCS	25
FIGURE 29 AFTER SETTLING 480 THE VALUES OF ROW NUC BIAS GENERATOR	26
FIGURE 30 CHARACTERISTIC OF ON-CHIP THERMOMETER	27

DB640-17C-A / 640 x 480 VGA LWIR UNCOOLED MICROBOLOMETER $35\,/\,36$

9. LIST OF TABLES

Α

TABLE 1 DESCRIPTION OF PIN CONFIGURATION	3
TABLE 2 SPECIFICATION OF TRANSMITTANCE	5
TABLE 3 OPERABILITY SPECIFICATION	6
TABLE 4 INPUT AND OUTPUT RANGE OF AMPLIFIERS	10
TABLE 5 SCDI DATA TABLE	13