

深圳市创芯弘科技有限公司 SGM4556 2-Bit Bidirectional Voltage-Level Translator with Auto Direction Sensing

GENERAL DESCRIPTION

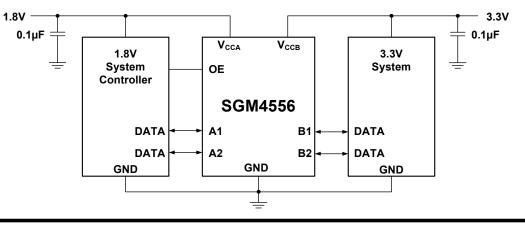
This 2-bit non-inverting translator uses two separate configurable power-supply rails. The A ports are designed to track V_{CCA}. V_{CCA} accepts any supply voltage from 1.2V to 5.0V. The B ports are designed to track V_{CCB}. V_{CCB} accepts any supply voltage from 1.65 V to 5.5V. This allows for universal low-voltage bidirectional translation between any of the 1.2V, 1.5V, 1.8V, 2.5V, 3.3V and 5V voltage nodes. V_{CCA} should not exceed V_{CCB}.

When the output-enable (OE) input is low, all outputs are placed in the high-impedance state. OE has an internal pull-down current source, as long as V_{CCB} is powered.

This device is fully specified for partial-power-down applications using I_{OFF} . The I_{OFF} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

To ensure the high-impedance state during power up or power down, OE should be tied to GND through a pull-down resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

The SGM4556 is available in Green XTDFN-1.4×1-8L and SOT-23-8 packages. It operates over an ambient temperature range of -40 $^{\circ}$ C to +85 $^{\circ}$ C.


TYPICAL APPLICATION CIRCUIT

FEATURES

- 1.2V to 5.0V on A Ports and 1.65V to 5.5V on B Ports $(V_{\rm CCA} \leq V_{\rm CCB})$
- V_{cc} Isolation: If Either V_{cc} is at GND, All Outputs are in the High-Impedance State
- OE Input Circuit Referenced to V_{CCA}
- Low Power Consumption
- Push-Pull Output
- I_{OFF}: Supports Partial-Power-Down Mode Operation
- -40°C to +85°C Operating Temperature Range
- Available in Green XTDFN-1.4×1-8L and SOT-23-8 Packages

APPLICATIONS

UART GPIO

2-Bit Bidirectional Voltage-Level Translator with Auto Direction Sensing

PACKAGE/ORDERING INFORMATION

MODEL	PACKAGE DESCRIPTION	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKAGE OPTION
SGM4556	SOT-23-8	-40°C to +85°C	SGM4556YN8G/TR	SM2XX	Tape and Reel, 3000
361414550	XTDFN-1.4×1-8L	-40℃ to +85℃	SGM4556YXDO8G/TR	N8X	Tape and Reel, 5000

NOTE: **X** = Date Code, **XX** = Date Code.

MARKING INFORMATION

<u>SM2 X X</u>

Date code - Month ("A" = Jan. "B" = Feb. … "L" = Dec.)
Date code - Year ("A" = 2010, "B" = 2011 …)
Chip I.D.

For example: SM2DB (2013, February)

ABSOLUTE MAXIMUM RATINGS

$\begin{array}{l} V_{CCA}, \mbox{ Supply Voltage Range} \\ V_{CCB}, \mbox{ Supply Voltage Range} \\ V_{I,} \mbox{ Input Voltage Range} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	0.3V to 6V 0.3V to 6V
A Ports	
B Ports	
V_{O} , Voltage Range Applied to Any Output in State ^{(2) (3)}	n the High or Low
A Ports0	.3V to V _{CCA} + 0.3V
B Ports0	.3V to V _{CCB} + 0.3V
I _{IK} , Input Clamp Current (V _I < 0)	50mA
I _{OK} , Output Clamp Current (V _O < 0)	50mA
Io, Continuous Output Current	±50mA
Continuous Current through V_{CCA} , V_{CCB} , or G	
Operating Temperature Range	40°C to +85°C
Junction Temperature	150°C
Storage Temperature Range	65°C to +150°C
Lead Temperature (Soldering, 10sec)	260°C
ESD Susceptibility	
HBM	4000V
MM	400V

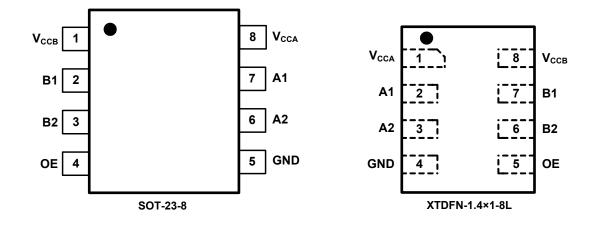
NOTES:

1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2. The input and output negative-voltage ratings may be exceeded if the input and output current ratings are observed.

3. The value of V_{CCA} and V_{CCB} are provided in the recommended operating conditions table.

CAUTION


This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

SGMICRO reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. Please contact SGMICRO sales office to get the latest datasheet.

2-Bit Bidirectional Voltage-Level Translator with Auto Direction Sensing

PIN CONFIGURATIONS (TOP VIEW)

PIN DESCRIPTION

P	IN		FUNCTION	
SOT-23-8	XTDFN- 1.4×1-8L	NAME	FUNCTION	
1	8	V _{CCB}	B Ports Supply Voltage. $1.65V \le V_{CCB} \le 5.5V$.	
2	7	B1	Input/Output B. Referenced to V _{CCB} .	
3	6	B2	Input/Output B. Referenced to V _{CCB.}	
4	5	OE	3-State Output Enable. Pull OE low to place all outputs in 3-state mode. Referenced to $V_{\text{CCA}}.$	
5	4	GND	Ground.	
6	3	A2	Input/Output A. Referenced to V _{CCA} .	
7	2	A1	Input/Output A. Referenced to V _{CCA} .	
8	1	V _{CCA}	A Ports Supply Voltage. 1.2V \leq V _{CCA} \leq 5.0V and V _{CCA} \leq V _{CCB.}	

2-Bit Bidirectional Voltage-Level Translator with Auto Direction Sensing

ELECTRICAL CHARACTERISTICS

(Full = -40°C to +85°C, typical values are at T_A = +25°C, unless otherwise noted.)

PARAME	TER	CONDITIONS			MIN	TYP	MAX	UNITS
RECOMMENDED C	PERATING CO	NDITIONS (1)						
Querely Maltana	V _{CCA}				1.2		5.0	N
Supply Voltage	V _{CCB}				1.65		5.5	V
High-Level	Data Inputs	V _{CCA} = 1.2V to 5.0	0V, V _{CCB} = 1.65V to 5.5V		V _{CCI} × 0.85		V _{CCI}	V
Input Voltage (V _{IH})	OE Input	V _{CCA} = 1.2V to 5.0	0V, V _{CCB} = 1.65V to 5.5V		V _{CCA} × 0.85		5.5	V
Low-Level	Data Inputs	V _{CCA} = 1.2V to 5.0	0V, V _{CCB} = 1.65V to 5.5V		0		V _{CCI} × 0.2	
Input Voltage (V _{IL})	OE Input	V _{CCA} = 1.2V to 5.	0V, V _{CCB} = 1.65V to 5.5V		0		V _{CCA} × 0.2	V
Voltage Range Applied to Any Output in the High-Impedance or Power-Off State (V _o)		$V_{000} = 1.2 V to 5.0$	DV Vccc = 1.65V to 5.5V		0		5.0	v
		V_{CCA} = 1.2V to 5.0V, V_{CCB} = 1.65V to 5.5V			0		5.5	
Input Transition Rise or Fall Rate	A Port Inputs	V _{CCA} = 1.2V to 5.	0V, V _{CCB} = 1.65V to 5.5V				40	ns/V
$(\Delta t/\Delta V)$ B Port Inputs		V_{CCA} = 1.2V to 5.0V, V_{CCB} = 1.65V to 5.5V					40	113/ V
ELECTRICAL CHA	RACTERISTICS	(1) (2)						
A Ports High Level Output Voltage		I _{он} = -20µА	V _{CCA} = 1.2V	+25°C		1.05		
(V _{OHA}) A Ports Low Level Output Voltage		10HΣυμΑ	V_{CCA} = 1.4V to 5.0V	Full	V _{CCA} - 0.4			
		Ι _{ΟΙ} = 20μΑ	V _{CCA} = 1.2V	+25°C		0.1		
(V _{OLA})		1 _{0L} – 20µA	V_{CCA} = 1.4V to 5.0V	Full			0.4	V
B Ports High Level ((V _{онв})		I _{он} = -20µА	V_{CCB} = 1.65V to 5.5V	Full	V _{CCB} - 0.4			
B Ports Low Level C (V _{OLB})	Output Voltage	I _{OL} = 20μA V _{CCB} = 1.65V to 5.5V		Full			0.4	
Input Leakage	OE	$V_{cca} = 1.2V \text{ to } 5.0$	V _{CCA} = 1.2V to 5.0V, V _{CCB} = 1.65V to 5.5V				±1	
Current (I _I)	02	VCCA 1.2 V 10 0.		Full			±1.5	Αų
	A Ports	V_1 or $V_0 = 0V$ to 5		+25°C			±0.5	
Power Off Leakage Current		$V_{CCA} = 0V, V_{CCB} =$	= 0V to 5.5V	Full			±1	
(I _{OFF})	B Ports	V_1 or $V_0 = 0V$ to 5		+25°C			±0.5	
	D I Olto	$V_{CCA} = 0V$ to 5.0V	$V, V_{\rm CCB} = 0V$	Full			±1	
3-State Output	A or B Ports	$OE = GND, V_{CCA}$		+25°C			±0.5	
Leakage (I _{oz})		$V_{\rm CCB} = 1.65 V$ to 5		Full			±1	
			$V_{CCA} = 1.2V,$ $V_{CCB} = 1.65V$ to 5.5V	+25°C		0.1		
Quiescent Supply C	urrent (I _{CCA})	$V_1 = V_{CC1}$ or GND, $I_0 = 0$	$V_{CCA} = 1.4V$ to 5V, $V_{CCB} = 1.65V$ to 5.5V				10	μA
		Ŭ I	V_{CCA} = 5.0V, V_{CCB} = 0V	Full			10	
			V_{CCA} = 0V, V_{CCB} = 5.5V				-1	
			$V_{CCA} = 1.2V,$ $V_{CCB} = 1.65V$ to 5.5V	+25°C		1		μA
Quiescent Supply C	urrent (I _{ссв})	$V_1 = V_{CC1}$ or GND, $I_0 = 0$	V_{CCA} = 1.4V to 5.0V, V_{CCB} = 1.65V to 5.5V				10	μΑ
			V_{CCA} = 5V, V_{CCB} = 0V	Full			-1	
			V_{CCA} = 0V, V_{CCB} = 5.5V				10	

2-Bit Bidirectional Voltage-Level **Translator with Auto Direction Sensing**

ELECTRICAL CHARACTERISTICS

(Typical values are at T_A = +25°C, unless otherwise specified.)

PARAMETER	CON	DITIONS	TEMP	MIN	ТҮР	MAX	UNITS
Quiescent Supply Current	V _I = V _{CCI} or GND,	V _{CCA} = 1.2V, V _{CCB} = 1.65V to 5.5V	+25°C		1		μA
$(I_{CCA} + I_{CCB})$	I ₀ = 0	V_{CCA} = 1.4V to 5.0V, V_{CCB} = 1.65V to 5.5V	Full			15	μΑ
Quiescent Supply Current (L)	$V_1 = V_{CC1}$ or GND, $I_0 = 0$,	$V_{CCA} = 1.2V,$ $V_{CCB} = 1.65V$ to 5.5V	+25°C		0.1		μA
Quiescent Supply Current (I _{CCZA})	OE = GND	V_{CCA} = 1.4V to 5.0V, V_{CCB} = 1.65V to 5.5V	Full			10	μΛ
Quiescent Supply Current (I _{CCZB})	$V_1 = V_{CCI} \text{ or } GND,$ $I_0 = 0,$ OE = GND	$V_{CCA} = 1.2V,$ $V_{CCB} = 1.65V$ to 5.5V	+25°C		0.1		
Quiescent Supply Current (ICCZB)		V_{CCA} = 1.4V to 5.0V, V_{CCB} = 1.65V to 5.5V	Full			10	μA
OE Input Capacitance (C ₁)	V _{CCA} = 1.2V to 5.0V	, V _{CCB} = 1.65V to 5.5V	+25°C		4		pF
Input/Output Capacitance A Ports (C_{10})	V_{CCA} = 1.2V to 5.0V, V_{CCB} = 1.65V to 5.5V		+25°C –		4.5		pF
Input/Output Capacitance B Ports (C_{IO})			+230		4.5		ρr

NOTES:

1. V_{CCI} is the supply voltage associated with the input ports.

2. V_{CCO} is the supply voltage associated with the output ports.

TIMING REQUIREMENTS

		V _{CCB} = 1.8V	V _{CCB} = 2.5V	V _{CCB} = 3.3V	V _{CCB} = 5V	
		ТҮР	ТҮР	ТҮР	ТҮР	UNITS
(T _A = +25°C, V _{CCA} = 1.	2V, unless otherwi	se noted.)				
Data Rate		20	20	20	20	Mbps
Pulse Duration (t _w)	Data Inputs	50	50	50	50	ns
(T _A = +25°C, V _{CCA} = 1.	5V, unless otherwi	se noted.)	•			
Data Rate		40	40	40	40	Mbps
Pulse Duration (t _w)	Data Inputs	25	25	25	25	ns
(T _A = +25°C, V _{CCA} = 1.	8V, unless otherwi	se noted.)				
Data Rate		60	60	60	60	Mbps
Pulse Duration (t _w)	Data Inputs	17	17	17	17	ns
(T _A = +25°C, V _{CCA} = 2.	5V, unless otherwi	se noted.)	•			
Data Rate			100	100	100	Mbps
Pulse Duration (t _w)	Data Inputs		10	10	10	ns
(T _A = +25°C, V _{CCA} = 3.	3V, unless otherwi	se noted.)	•			
Data Rate				100	100	Mbps
Pulse Duration (t_w)	Data Inputs			10	10	ns
(T _A = +25°C, V _{CCA} = 5	V, unless otherwise	e noted.)	•			
Data Rate					100	Mbps
Pulse Duration (t _w)	Data Inputs				10	ns

2-Bit Bidirectional Voltage-Level **Translator with Auto Direction Sensing**

SWITCHING CHARACTERISTICS

(T_A = +25°C, V_{CCA} = 1.2V, unless otherwise noted.)

		FROM	то	V _{ссв} = 1.8V	V _{CCB} = 2.5V	V _{CCB} = 3.3V	V _{ссв} = 5V	
PAR	AMETER	(INPUT)	(OUTPUT)	ТҮР	TYP	ТҮР	ТҮР	UNITS
	t _{PLH}	A	Р	22.1	20.7	19.9	19.4	
+	t _{PHL}	A	В	31.1	29.3	29.9	31.5	
t _{PD}	тер терене тере	в	٨	29.8	29.7	25.1	30.6	ns
		В	A	22.8	19.9	20.1	18.2	
	t _{PZH}		А	66.9	67.3	66.7	65.8	
	t _{PZL}	OE –	A	48.2	47.6	47.2	46.2	
t _{EN}	t _{PZH}		В	32.6	28.8	28.5	29.6	ns
	t _{PZL}		D	62.7	60.5	61.5	63.7	
	t _{PHZ}		٨	1161	1170	1165	1168	
+	t _{PLZ}	OE	A	521	524	528	529	
t _{DIS}	t _{PHZ}	UE	Р	1135	1166	1180	1186	ns
	t _{PLZ}	-	В	532	567	578	563	Í
	t _{rA}	A Ports	Rise Time	21.9	21.6	20.0	18.8	ns
	t _{fA}	A Ports	Fall Time	5.9	6.3	5.2	3.9	ns
	t _{rB}	B Ports	Rise Time	3.9	2.3	1.9	1.6	ns
	t _{fB}	B Ports	Fall Time	2.3	1.9	1.7	1.6	ns
1	t _{sk(O)}	Channel-	to-Channel	0.5	0.5	0.5	0.5	ns
	ta Rate			20	20	20	20	Mbps

SWITCHING CHARACTERISTICS

(T_A = +25°C, V_{CCA} = 1.5V, unless otherwise noted.)

		FROM	то	V _{CCB} = 1.8V	V _{CCB} = 2.5V	$V_{CCB} = 3.3V$	V _{CCB} = 5V	
PARAMETER		(INPUT)	(OUTPUT)	TYP	ТҮР	ТҮР	ТҮР	UNITS
	t _{PLH}		P	14.8	14.2	13.2	12.5	
	t _{PHL}	A	В	15.1	12.3	11.7	12.9	
t _{PD}	t _{PLH}	в	٨	13.0	13.6	11.5	10.8	ns
t _{PHL}	Б	A	11.9	9.9	9.5	8.3		
	t _{PZH}		А	28.9	29.0	28.8	28.6	
	t _{PZL}	t _{PZL} OE t _{PZH} t _{PZL}	A	27.6	23.3	22.2	21.7	
t _{EN}	t _{PZH}		P	22.8	18.4	17.4	17.1	ns
	t _{PZL}		В	31.2	26.8	26.5	26.6	
	t _{PHZ}		А	1141	1132	1139	1138	
	t _{PLZ}	OE	A	536	531	535	534	
t _{DIS}	t _{PHZ}	UE	В	1112	1151	1165	1173	ns
	t _{PLZ}		Б	530	558	568	553	1
	t _{rA}	A Ports I	Rise Time	7.7	7.9	8.4	8.2	ns
	t _{fA}	A Ports	Fall Time	3.1	2.9	3.0	2.4	ns
	t _{rB}	B Ports	Rise Time	4.0	2.3	1.8	1.5	ns
	t _{fB}	B Ports	Fall Time	2.3	2.0	1.8	1.6	ns
ł	t _{sk(O)}	Channel-	to-Channel	0.5	0.5	0.5	0.5	ns
	ta Rate			40	40	40	40	Mbp

2-Bit Bidirectional Voltage-Level **Translator with Auto Direction Sensing**

SWITCHING CHARACTERISTICS

(T_A = +25°C, V_{CCA} = 1.8V, unless otherwise noted.)

		FROM	то	V _{CCB} = 1.8V	V _{CCB} = 2.5V	V _{CCB} = 3.3V	V _{CCB} = 5V	
PAR	AMETER	(INPUT)	(OUTPUT)	ТҮР	TYP	ТҮР	ТҮР	UNITS
	t _{PLH}	A	В	11.3	12.3	11.4	10.6	
+	t _{PHL}		D	11.0	8.8	8.0	8.4	n 0
t _{PD}	t _{PLH}	в	А	8.6	10.6	9.1	7.4	ns
	t _{PHL}	Б	A	9.2	6.8	8.0	5.7	
	t _{PZH}		А	19.0	19.0	19.0	19.1	
	t _{PZL}	OE -	A	21.7	17.9	16.5	15.8	
t _{EN}	t _{PZH}		В	20.1	15.6	14.6	14.0	ns
	t _{PZL}		D	22.6	19.2	18.7	18.5	
	t _{PHZ}		А	1170	1169	1170	1170	
+	t _{PLZ}	OE	A	541	540	541	542	n 0
t _{DIS}	t _{PHZ}	UE	P	1099	1142	1157	1166	ns
	t _{PLZ}		В	533	560	566	554	
	t _{rA}	A Ports	Rise Time	4.8	4.6	4.4	3.9	ns
	t _{fA}	A Ports	Fall Time	2.3	2.6	2.5	2.3	ns
	t _{rB}	B Ports	Rise Time	4.3	2.3	1.8	1.6	ns
	t _{fB}	B Ports	Fall Time	2.3	2.1	1.8	2.2	ns
1	t _{sk(O)}	Channel-	to-Channel	0.5	0.5	0.5	0.5	ns
Da	ta Rate			60	60	60	60	Mbps

SWITCHING CHARACTERISTICS

(T_A = +25°C, V_{CCA} = 2.5V, unless otherwise noted.)

	AMETER	FROM	то	V _{CCB} = 2.5V	V _{CCB} = 3.3V	V _{CCB} = 5V	
PARA	AWEIEK	(INPUT)	(OUTPUT)	ТҮР	ТҮР	ТҮР	
	t _{PLH}	•	В	9.4	7.1	5.2	
	t _{PHL}	A	В	6.1	5.7	5.1	
t _{PD}	t _{PLH}	В	А	7.8	5.5	4.6	ns
	t _{PHL}	D	A	5.7	5.2	3.6	
	t _{PZH}		٨	13.0	12.7	13.0	
t _{EN}	t _{PZL}	OE -	A -	14.4	13.0	12.2	
	t _{PZH}		В	13.7	12.5	12.1	ns
	t _{PZL}		В	14.5	14.1	13.4	
t _{DIS}	t _{PHZ}		٨	1188	1188	1189	
	t _{PLZ}	OE	A	571	571	573	
		UE	В	1127	1151	1158	ns
	t _{PLZ}		D	566	570	553	
	t _{rA}	A Ports	Rise Time	2.6	3.2	3.7	ns
	t _{fA}	A Ports	Fall Time	2.4	2.6	2.7	ns
t _{rB} B Ports		B Ports	Rise Time	2.2	2.2	2.3	ns
	t _{fB}	B Ports	Fall Time	1.8	2.2	1.8	ns
t	SK(O)	Channel-	to-Channel	0.5	0.5	0.5	ns
	a Rate			100	100	100	Mbp

2-Bit Bidirectional Voltage-Level **Translator with Auto Direction Sensing**

SWITCHING CHARACTERISTICS

(T_A = +25°C, V_{CCA} = 3.3V, unless otherwise noted.)

DAD	AMETER	FROM	то	V _{CCB} = 3.3V	V _{CCB} = 5V	UNITS
PAR		(INPUT)	(OUTPUT)	ТҮР	ТҮР	
	t _{PLH}	A	В	6.2	4.1	
+	t _{PHL}		D	5.0	4.0	20
t _{PD}	t _{PLH}	В	А	5.0	3.7	ns
	t _{PHL}	Б	A	4.6	3.0	
	t _{PZH}		А	11.5	11.0	
	t _{PZL}	OE	A	12.3	11.3	
t _{EN}	t _{PZH}	UE	В	11.8	11.5	ns
	t _{PZL}		D	12.4	11.7	
	t _{PHZ}		А	1196	1190	
+	t _{PLZ}	OE	A	583	584	20
t _{DIS}	t _{PHZ}	UE	_	1139	1150	ns
	t _{PLZ}		В	578	557	
	t _{rA}	A Ports	Rise Time	5.8	2.8	ns
	t _{fA}	A Ports	Fall Time	4.4	2.3	ns
	t _{rB}	B Ports	Rise Time	1.9	1.7	ns
	t _{fB}	B Ports	Fall Time	2.0	2.1	ns
1	SK(O)	Channel-	to-Channel	0.5	0.5	ns
Dat	ta Rate			100	100	Mbps

SWITCHING CHARACTERISTICS

(T_A = +25°C, V_{CCA} = 5V, unless otherwise noted.)

	METER	FROM	то	V _{CCB} = 5V	
PARA		(INPUT)	(OUTPUT)	ТҮР	UNITS
	t _{PLH}	A	В	3.5	
•	t _{PHL}	A	В	2.9	
t _{PD}	t _{PLH}	В	Α	3.0	ns
	t _{PHL}		A	2.6	
	t _{PZH}			11.5	
	t _{PZL}	05	Α	11.7	
t _{EN}	t _{PZH}	OE	D	11.3	ns
	t _{PZL}	-	В	10.7	
	t _{PHZ}			1196	
	t _{PLZ}	05	Α	578	
t _{DIS}	t _{PHZ}	OE	В	1146	ns
	t _{PLZ}		В	559	
	t _{rA}	A Ports	Rise Time	3.4	ns
	t _{fA}	A Ports	Fall Time	3.1	ns
	t _{rB}	B Ports	Rise Time	1.7	ns
t _{fB}		B Ports	Fall Time	1.7	ns
ts	SK(O)	Channel-	to-Channel	0.5	ns
	a Rate			100	Mbps

2-Bit Bidirectional Voltage-Level Translator with Auto Direction Sensing

OPERATING CHARACTERISTICS

 $(T_A = +25^{\circ}C, unless otherwise noted.)$

PARAMETER			V _{CCA}									
		TEST CONDITIONS	1.2V	1.2V	1.5V	1.8V	2.5V	2.5V	3.3V	3.3V	5V	
			V _{CCB}									UNITS
			5V	1.8V	1.8V	1.8V	2.5V	5V	3.3V	5V	5V	
			TYP	TYP	TYP	TYP	TYP	TYP	TYP	TYP	TYP	1
6		0 - 0	61	56	13	6	7	7	8	8	9	pF
CPDA		$C_{L} = 0,$ f = 10MHz, t _r = t _f = 1ns, OE = V _{CCA} (Outputs Enabled)	9	9	9	9	9	9	9	9	10	pF
C _{PDB}	A Port Inputs, B Port Outputs		10	9	9	9	9	9	9	9	9	pF
CPDB	B Port Inputs, A Port Outputs		20	92	7	7	7	9	8	9	10	pF
C _{PDA}	A Port Inputs, B Port Outputs	C _L = 0,	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	pF
OPDA	B Port Inputs, A Port Outputs	$C_L = 0,$ f = 10MHz, $t_r = t_r = 1ns,$ OE = GND (Outputs Disabled)	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	pF
C _{PDB}	A Port Inputs, B Port Outputs		0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	pF
	B Port Inputs, A Port Outputs		0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	pF

2-Bit Bidirectional Voltage-Level Translator with Auto Direction Sensing

SGM4556

APPLICATION INFORMATION

Applications

The SGM4556 can be used in level-translation applications for interfacing devices or systems operating at different interface voltages with one another.

Architecture

The SGM4556 architecture (see Figure 1) does not require a direction-control signal to control the direction of data flow from A to B or from B to A. In a DC state, the output drivers of the SGM4556 can maintain a high or low, but are designed to be weak, so that they can be overdriven by an external driver when data on the bus starts flowing the opposite direction.

The output one-shots detect rising or falling edges on the A or B ports. During a rising edge, the one-shot turns on the PMOS transistors (T1, T3) for a short duration, which speeds up the low-to-high transition. Similarly, during a falling edge, the one-shot turns on the NMOS transistors (T2, T4) for a short duration, which speeds up the high-to-low transition. The typical output impedance during output transition is 140 Ω at V_{CCO} = 1.2V to 1.8V, 50 Ω at V_{CCO} = 1.8V to 3.3V, and 40 Ω at V_{CCO} = 3.3V to 5V.

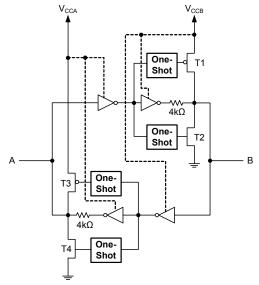


Figure 1. Architecture of an SGM4556 I/O Cell

Input Driver Requirements

Typical I_{IN} vs. V_{IN} characteristics of the SGM4556 are shown in Figure 2. For proper operation, the device driving the data I/Os of the SGM4556 must have drive strength of at least ±2mA.

-(V_D - V_T)/4kΩ

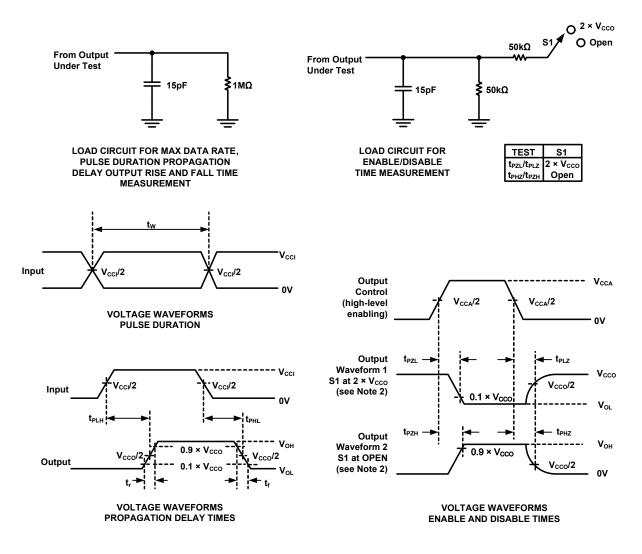
A. V_T is the input threshold voltage of the SGM4556 (typically $V_{CCI}/2$). B. V_D is the supply voltage of the external driver. Figure 2. Typical I_{IN} vs. V_{IN} Curve

Power Up

During operation, ensure that $V_{CCA} \le V_{CCB}$ at all times. During power-up sequencing, $V_{CCA} > V_{CCB}$ does not damage the device, so any power supply can be ramped up first. The SGM4556 has circuitry that disables all output ports when either V_{CC} is switched off ($V_{CCA/B} = 0V$).

Enable and Disable

The SGM4556 has an OE input that is used to disable the device by setting OE = low, which places all I/Os in the high-impedance (Hi-Z) state. OE has an internal pull-down current source, as long as V_{CCB} is powered. The disable time indicates the delay between when OE goes low and when the outputs are actually disabled (Hi-Z). The enable time (t_{EN}) indicates the amount of time the user must allow for the one-shot circuitry to become operational after OE is taken high.


Pull-Up or Pull-Down Resistors on I/O Lines

The SGM4556 is designed to drive capacitive loads of up to 70pF. The output drivers of the SGM4556 have low DC drive strength. If pull-up or pull-down resistors are connected externally to the data I/Os, their values must be kept higher than $50k\Omega$ to ensure that they do not contend with the output drivers of the SGM4556.

For the same reason, the SGM4556 should not be used in applications such as I^2C or 1-wire where an open-drain driver is connected on the bidirectional data I/O. For these applications, please use the open-drain output SGM4553 which is pin-compatible with the SGM4556.

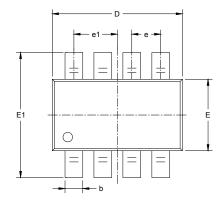
SG Micro Corp www.sg-micro.com

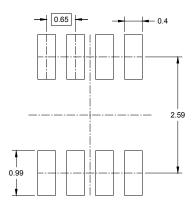
PARAMETER MEASUREMENT INFORMATION

NOTES:

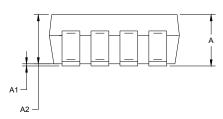
- 1. C_L includes probe and jig capacitance.
- 2. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- 3. All input pulses are supplied by generators having the following characteristics: PRR \leq 10MHz, Z₀ = 50 Ω , dv/dt \geq 1V/ns.
- 4. The outputs are measured one at a time, with one transition per measurement.
- 5. t_{PLZ} and t_{PHZ} are the same as $t_{\mathsf{DIS}}.$
- 6. t_{PZL} and t_{PZH} are the same as $t_{\text{EN}}.$
- 7. t_{PLH} and t_{PHL} are the same as $t_{\mathsf{PD}}.$
- 8. V_{CCI} is the V_{CC} associated with the input ports.
- 9. V_{CCO} is the V_{CC} associated with the output ports.
- 10. All parameters and waveforms are not applicable to all devices.

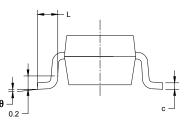
Figure 3. Load Circuits and Voltage Waveforms



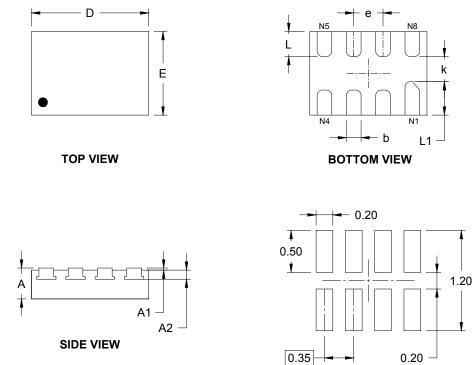

SG Micro Corp www.sg-micro.com

2-Bit Bidirectional Voltage-Level Translator with Auto Direction Sensing


PACKAGE OUTLINE DIMENSIONS


SOT-23-8

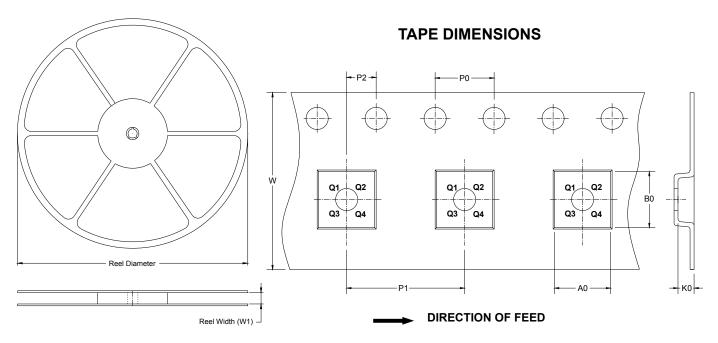
RECOMMENDED LAND PATTERN (Unit: mm)



Symbol	-	nsions meters	Dimensions In Inches			
	MIN	MAX	MIN	MAX		
A	1.050	1.250	0.041	0.049		
A1	0.000	0.100	0.000	0.004		
A2	1.050	1.150	0.041	0.045		
b	0.300	0.500	0.012	0.020		
С	0.100	0.200	0.004	0.008		
D	2.820	3.020	0.111	0.119		
E	1.500	1.700	0.059	0.067		
E1	2.650	2.950	0.104	0.116		
е	e 0.650 BSC		0.026 BSC			
e1	0.975 BSC		0.038	BSC		
L	0.300	0.600	0.012	0.024		
θ	0°	8°	0°	8°		

PACKAGE OUTLINE DIMENSIONS

XTDFN-1.4×1-8L

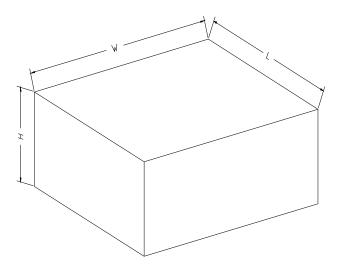

RECOMMENDED LAND PATTERN (Unit: mm)
----------------------------	-----------

Symbol		nsions meters	Dimensions In Inches			
	MIN MAX		MIN	MAX		
A	0.340	0.340 0.400		0.016		
A1	0.000	0.050	0.000	0.002		
A2	0.110	REF	0.004 REF			
D	1.350	1.450	0.053	0.057		
E	0.950	0.950 1.050		0.041		
k	0.200 MIN		0.008	3 MIN		
b	0.150	0.200	0.006	0.008		
е	e 0.350 TYP L 0.250 0.350 L1 0.350 0.450		0.014	TYP		
L			0.010	0.014		
L1			0.014	0.018		

TAPE AND REEL INFORMATION

REEL DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.


KEY PARAMETER LIST OF TAPE AND REEL

Package Type	Reel Diameter	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P0 (mm)	P1 (mm)	P2 (mm)	W (mm)	Pin1 Quadrant
SOT-23-8	7"	9.5	3.17	3.23	1.37	4.0	4.0	2.0	8.0	Q3
XTDFN-1.4×1-8L	7"	9.5	1.15	1.6	0.5	4.0	4.0	2.0	8.0	Q1

2-Bit Bidirectional Voltage-Level Translator with Auto Direction Sensing

CARTON BOX DIMENSIONS

NOTE: The picture is only for reference. Please make the object as the standard.

KEY PARAMETER LIST OF CARTON BOX

Reel Type	Length (mm)	Width (mm)	Height (mm)	Pizza/Carton	
7" (Option)	368	227	224	8	
7"	442	410	224	18	

