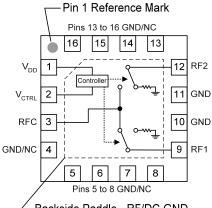

TQP4M0010 *High Isolation Absorptive SPDT Switch*

Applications

- WLAN
- Cellular Infrastructure
- Test and Measurement
- Smart Energy
- UHF/VHF
- LMR
- General Purpose Broadband Wireless


Product Features

- General Purpose
- Low Insertion Loss
- +56 dBm Input IP3
- High Isolation
- Absorptive
- Single Positive Voltage Control
- Standard SMT Package
- 100 to 6000 MHz Operating Range

16-pin 4x4mm QFN Package

Functional Block Diagram

∠Backside Paddle - RF/DC GND

General Description

The TQP4M0010 is a GaAs FET single-pole, double throw (SPDT) high isolation absorptive switch that provides 100-6000 MHz broadband performance. The TQP4M0010 may be operated using a DC supply ranging from 3 to 5 Volts and with control signals operating from 1.8 to 5 Volts.

The TQP4M0010 is packaged in a RoHS-compliant, compact 4x4 mm surface-mount leadless package.

This SPDT switch is targeted for use in wireless infrastructure, test and measurement, or can be used for any general purpose wireless application.

Pin Configuration

Pin No.	Symbol
1	V _{DD}
2	V _{CTRL}
3	RFC
4-8, 13-16	GND or NC
10, 11	GND
9	RF1
12	RF2
Backside Paddle	RF/DC GND

Ordering Information

Part No.	Description	
TQP4M0010	SPDT Absorptive Switch	
TQP4M0010-PCB	100-4500 MHz Evaluation Board	
Standard T/R size = 2500 pieces on a 13" reel		

Absolute Maximum Ratings

Parameter	Rating
Storage Temperature	−65 to +150°C
RF Input Power, CW, 50Ω, T = 25°C	+36 dBm
Supply Voltage (V _{DD})	+6 V
Control Voltage (V _{CTRL})	V _{DD} +0.5 V

Operation of this device outside the parameter ranges given above may cause permanent damage.

Recommended Operating Conditions

Parameter	Min	Тур	Max	Units
V _{DD}	2.75	5.0	5.25	V
Operating Temp. Range	-40		+95	°C

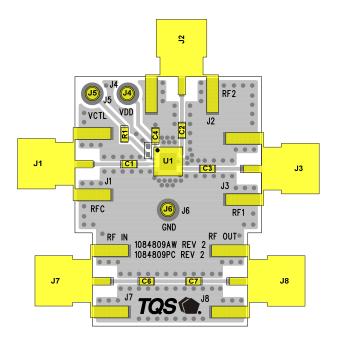
Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

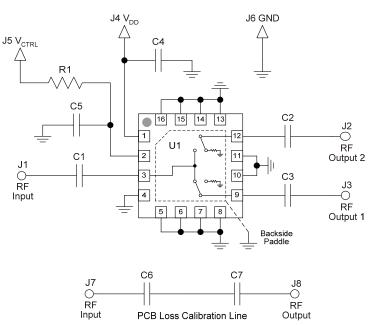
Electrical Specifications

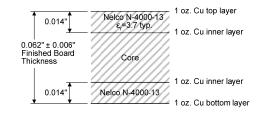
Test conditions unless otherwise noted: V_{DD} = +5 V, V_{CTRL} = +3 V, Temp.=+25°C, 50 Ω system

Parameter	Conditions	Min	Тур	Max	Units	
Operational Frequency Range		100		6000	MHz	
	Low	0		0.4	V	
Control Voltage	High	1.8		V _{DD} +0.5 V	V	
	0.1 – 1.0 GHz		0.5	0.8		
Incontion Loop	1.0 – 2.5 GHz		0.6	0.9	d٦	
Insertion Loss	2.5 – 3.0 GHz		0.7	1.0	dB	
	3.0 – 4.5 GHz		0.8			
	0.1 – 1.0 GHz	50	55			
Isolation – RFC to RF1/RF2	1.0 – 2.5 GHz	45	48		ЧD	
ISOIALION - REC LO RE I/REZ	2.5 – 3.0 GHz	45	47		dB	
	3.0 – 4.5 GHz		44			
	0.1 – 1.0 GHz		50		-10	
loolation DE1 to DE2	1.0 – 2.5 GHz		44			
Isolation – RF1 to RF2	2.5 – 3.0 GHz		43		dB	
	3.0 – 4.5 GHz		40			
Return Loss – RFC Port	0.1 – 1.0 GHz	16	20			
Return Loss – RFC Pon	1.0 – 4.5 GHz		13		dB	
Input P1dB	f = 2 GHz		+33		dBm	
Input IP3	$f = 2 \text{ GHz}$, Pin/tone=+15 dbm, $\Delta f=1 \text{ MHz}$		+56		dBm	
	t _{ON} (50% CTL to 90% RF)		233	290	ns	
Switching Speed	t _{on} (50% CTL to 90% RF), −40 to +85°C			1	us	
	t _{OFF} (50% CTL to 10% RF)		96			
	t _{on} (50% CTL to 98% RF)		300		ns	
	t _{OFF} (50% CTL to 2% RF)		110			
Total Supply current (I _{DD})			70	150	uA	

Digital Control Voltages


Switch Control Truth Table


State	Bias Condition			Signal I	Path State
Low	≤ 0.4 V	V	CTRL	RFC to RF1	RFC to RF2
High	≥ 1.8 V	L	ow	Off (Isolation)	On (Insertion Loss)
		Н	igh	On (Insertion Loss)	Off (Isolation)


TQP4M0010 *High Isolation Absorptive SPDT Switch*

TQP4M0010-PCB Evaluation Board

TriQuint PCB 1084809 Material and Stack-up

50 ohm line dimensions: Width = .021" Spacing = .006"

Bill of Material – TQP4M0010-PCB

Reference Des.	Value	Description	Manuf.	Part Number
n/A	n/A	Printed Circuit Board	TriQuint	1084809 Rev. 2
U1	n/A	SPDT Switch	TriQuint	TQP4M0010
R1 ⁽¹⁾	0 Ohm	Res., 0402, 5%, 1/16W	various	
C1, C2, C3, C6, C7	100 pF	Cap., 0402, 5%, 50V, NPO/COG	various	
C4	1000 pF	Cap., 0402, 5%, 50V, NPO/COG	various	
C5	DNP	Do not populate		
J4, J5, J6	n/A	Solder Turret	Mill Max	2533-0-00-44-00-00-07-0
J1, J2, J3, J7, J8	n/A	Conn, RF, SMA F STRT, .062 PCB	Radiall Inc.	9602-1111-018

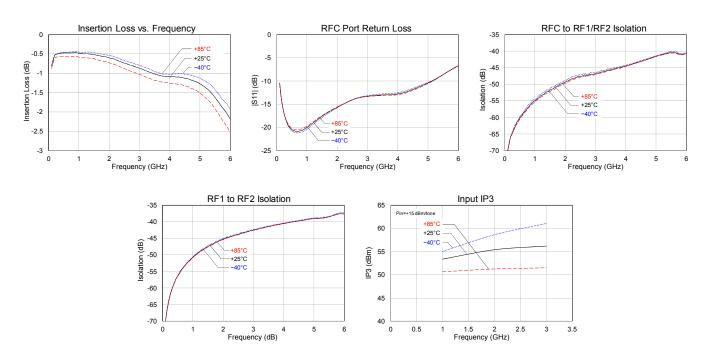
Notes:

1. R1 may be omitted (replaced with circuit trace) in end user circuits.

Typical Performance – TQP4M0010-PCB

Test conditions unless otherwise noted: V_{DD} = +5 V, V_{CTRL} = +3 V, Temp=25°C, 50 Ω system

	, .cm		••	
Parameter		Typical Value)	Units
Frequency	1	2	3	GHz
Insertion Loss ⁽¹⁾	0.5	0.6	0.7	dB
RFC Port Return Loss	20	16	13	dB
RFC to RF1/RF2 Isolation	55	50	47	dB
RF1 to RF2 Isolation	50	45	43	dB
Input P1dB	+36	+33	+30	dBm
Input IP3 ⁽²⁾	+53	+56	+56	dBm


Notes:

1. The Insertion Loss values reflect de-embedding of eval board RF I/O line losses that would not be present in target applications.

2. IIP3 measured with two tones at an input power of +15 dBm / tone separated by 1 MHz.

Performance Plots – TQP4M0010-PCB

Test conditions unless otherwise noted: V_{DD} =+5 V, V_{CTRL} = +3 V, Temp=+25°C, 50 Ω system

90% RF -

0.00 V 7.21mV ∆7.21mV

-1.40n 225ns

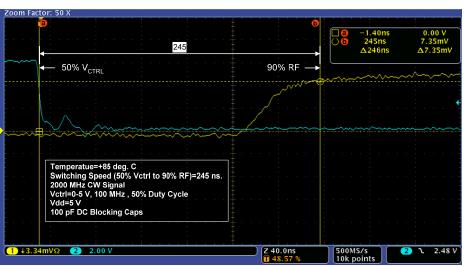
∆227ns

Switching Speed Over Temperature (t_{ON})- TQP4M0010-PCB

 $50\% V_{CTRL}$

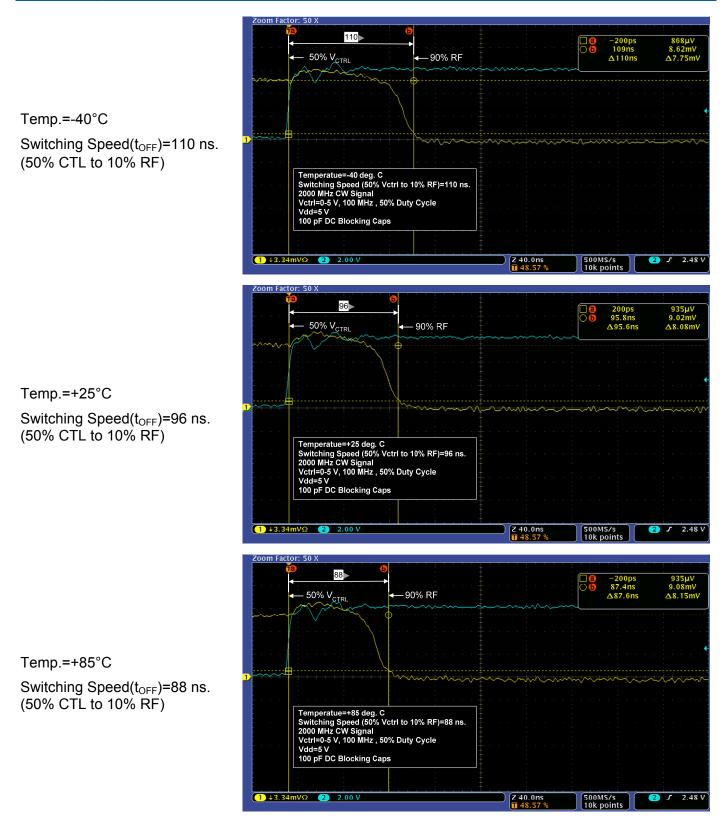
Temp.=-40°C Switching Speed(t_{ON})=225 ns. (50% CTL to 90% RF)

Temp.=+25°C


Switching Speed(t_{ON})=233 ns. (50% CTL to 90% RF)

Temperatue=-40 deg, C Switching Speed (50% Vctrl to 90% RF)=225 ns. 2000 MHz CW Signal Vctrl=0-5 V, 100 MHz , 50% Duty Cycle Vdd=5 V 400 = 5 C Blacking Cons. 100 pF DC Blocking Caps (**1** ↓3.34mVΩ (**2**) 2.00 V 2 l 2.48 V Z 40.0ns 500MS/s 10k points om Factor: 50 X 0.00 V 7.48mV ∆7.48m 233ns ∆235ns 233 50% V_{CTRL} 90% RF Temperatue=+25 deg. C Switching Speed (50% Vctrl to 90% RF)=233 ns. 2000 MHz CW Signal Vctrl=0-5 V, 100 MHz , 50% Duty Cycle Vdd=5 V 100 pF DC Blocking Caps (1) ↓3.34mVΩ (2) 2.00 V 500MS/s 10k points Z 40.0ns 2 l 2.48 V -1.40ns 245ns ∆246ns 245

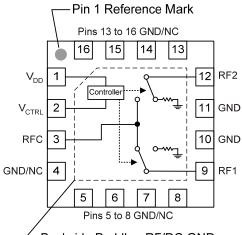
225


Temp.=+85°C

Switching Speed(t_{ON})=245 ns. (50% CTL to 90% RF)

Switching Speed Over Temperature (t_{OFF})- TQP4M0010-PCB

Switching Speed using different Blocking Caps

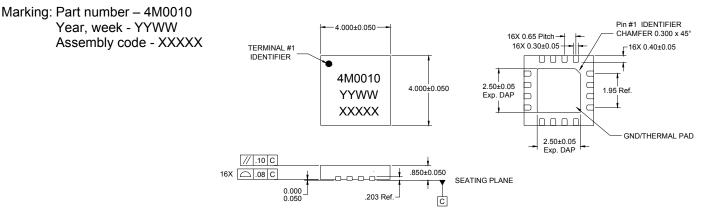

Switching Speed Measurement based on TQS Application Board

Using Shutdown Circuit: V_{CTRL}=3.0V, V_{DD}=5.0V

With C1, C2, C3 = 100pF	-40C	+25C	+85C
Turn-off Transition (50% CNTR – 10% RF)	110 ns	96 ns	88 ns
Turn-on Transition (50% CNTR – 90% RF)	225 ns	233 ns	245 ns

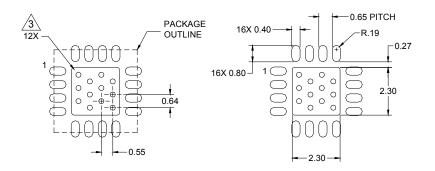
With C1, C2, C3 = 10pF	-40C	+25C	+85C
Turn-off Transition (50% CNTR – 10% RF)	85 ns	77 ns	69 ns
Turn-on Transition (50% CNTR – 90% RF)	2.71 us	2.55 us	2.10 us

Pin Configuration and Description



Pin No.	Label	Description
1	V _{DD}	DC voltage supply
2	V _{CTRL}	Digital control voltage
3	RFC	Antenna input. DC blocking capacitor required.
4-8, 13-16	GND or NC	No electrical connection. Provide grounded land pads for PCB mounting integrity.
10, 11	GND	RF/DC Ground
9	RF1	RF output 1. DC blocking capacitor required.
12	RF2	RF output 2. DC blocking capacitor required.
Backside Paddle	RF/DC GND	RF/DC Ground. Use recommended via pattern and ensure good solder attach for best thermal and electrical performance.

Mechanical Information


Package Marking and Dimensions

Notes:

- 1. All dimensions are in millimeters. Angles are in degrees.
- 2. Except where noted, this part outline conforms to JEDEC standard MO-220, Issue E (Variation VGGC) for thermally enhanced plastic very thin fine pitch quad flat no lead package (QFN).
- 3. Dimension and tolerance formats conform to ASME Y14.4M-1994.
- 4. The terminal #1 identifier and terminal numbering conform to JESD 95-1 SPP-012
- 5. Contact plating: NiPdAu

PCB Mounting Pattern

COMPONENT SIDE

Notes:

- 1. All dimensions are in millimeters. Angles are in degrees.
- 2. Use 1 oz. copper minimum for top and bottom layer metal.
- 3. We recommend a 0.35mm (#80/.0135") diameter bit for drilling via holes and a final plated thru diameter of 0.25 mm (0.10").
- 4. Ensure good package backside paddle solder attach for reliable operation and best electrical performance.

Product Compliance Information

ESD Sensitivity Ratings

Caution! ESD-Sensitive Device

ESD Rating:Class 0 (RF Ports)Value:<250 V</td>ESD Rating:Class 1A (DC Lines)Value:≥250 volts to < 500 volts</td>Test:Human Body Model (HBM)Standard:JEDEC Standard JESD22-A114

ESD Rating:Class IVValue:>1000 VTest:Charged Device Model (CDM)Standard:JEDEC Standard JESD22-C101

MSL Rating

MSL Rating: Level 1 Test: 260°C convection reflow Standard: JEDEC Standard IPC/JEDEC J-STD-020

Solderability

Compatible with both lead-free (260°C max. reflow temperature) and tin/lead (245°C max. reflow temperature) soldering processes.

Package contact plating: NiPdAu

RoHs Compliance

This part is compliant with EU 2002/95/EC RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment).

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄0₂) Free
- PFOS Free
- SVHC Free

Important Notice

For the latest specifications, additional product information, worldwide sales and distribution locations, and information about TriQuint:

Web:	<u>www.triquint.com</u>	Tel:	+1.503.615.9000
Email:	info-sales@triquint.com	Fax:	+1.503.615.8902

For technical questions and application information:

Email: sjcapplications.engineering@triquint.com

Contact Information

The information contained herein is believed to be reliable. TriQuint makes no warranties regarding the information contained herein. TriQuint assumes no responsibility or liability whatsoever for any of the information contained herein. TriQuint assumes no responsibility or liability whatsoever for the use of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for TriQuint products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

TriQuint products are not warranted or authorized for use as critical components in medical, life-saving, or lifesustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.